Characterization of the dapA-nlpB genetic locus involved in regulation of swarming motility, cell envelope architecture, hemolysin production, and cell attachment ability in Serratia marcescens.
نویسندگان
چکیده
Swarming migration of Serratia marcescens requires both flagellar motility and cellular differentiation and is a population-density-dependent behavior. While the flhDC and quorum-sensing systems have been characterized as important factors regulating S. marcescens swarming, the underlying molecular mechanisms are currently far from being understood. Serratia swarming is thermoregulated and is characterized by continuous surface migration on rich swarming agar surfaces at 30 degrees C but not at 37 degrees C. To further elucidate the mechanisms, identification of specific and conserved regulators that govern the initiation of swarming is essential. We performed transposon mutagenesis to screen for S. marcescens strain CH-1 mutants that swarmed at 37 degrees C. Analysis of a "precocious-swarming" mutant revealed that the defect in a conserved dapA(Sm)-nlpB(Sm) genetic locus which is closely related to the synthesis of bacterial cell wall peptidoglycan is responsible for the aberrant swarming phenotype. Further complementation and gene knockout studies showed that nlpB(Sm), which encodes a membrane lipoprotein, NlpB(Sm), but not dapA(Sm), is specifically involved in swarming regulation. On the other hand, dapA(Sm) but not nlpB(Sm) is responsible for the determination of cell envelope architecture, regulation of hemolysin production, and cellular attachment capability. While the nlpB(Sm) mutant showed similar cytotoxicity to its parent strain, the dapA(Sm) mutant significantly increased in cytotoxicity. We present evidence that DapA(Sm) is involved in the determination of cell-envelope-associated phenotypes and that NlpB(Sm) is involved in the regulation of swarming motility.
منابع مشابه
Membrane fluidity optimization regulates Serratia marcescens swarming behaviour through modulation of a temperature-dependent two-component signal transduction system
Serratia marcescens swarming behavior is characterized by continuous populational surface migration on swarming agar at 30°C, but not at 37°C. The underlying mechanism how S. marcescens population starts to initiate swarming and the temperature-dependent regulation of swarming behaviour are currently uncharacterized. We identify in S. marcescens a genetic locus that, when mutated, results in a ...
متن کاملEffects of PNPG on cell growth cycle, motility machinery and quorum sensing in Serratia marcescens.
p-Nitrophenylglycerol (PNPG) effectively inhibits swarming of the enterobacterium Proteus mirabilis. The underlying mechanism of inhibition is unclear. We have now found that both PNPG also inhibits motility and swarming in another enterobacterium, Serratia marcescens. While the peak promoter activities of the flagellar master operon (flhDCSm), the flagellin structural gene (hagSm) and the nucl...
متن کاملA Serratia marcescens PigP Homolog Controls Prodigiosin Biosynthesis, Swarming Motility and Hemolysis and Is Regulated by cAMP-CRP and HexS
Swarming motility and hemolysis are virulence-associated determinants for a wide array of pathogenic bacteria. The broad host-range opportunistic pathogen Serratia marcescens produces serratamolide, a small cyclic amino-lipid, that promotes swarming motility and hemolysis. Serratamolide is negatively regulated by the transcription factors HexS and CRP. Positive regulators of serratamolide produ...
متن کاملRssAB-FlhDC-ShlBA as a major pathogenesis pathway in Serratia marcescens.
Serratia marcescens has long been recognized as an important opportunistic pathogen, but the underlying pathogenesis mechanism is not completely clear. Here, we report a key pathogenesis pathway in S. marcescens comprising the RssAB two-component system and its downstream elements, FlhDC and the dominant virulence factor hemolysin ShlBA. Expression of shlBA is under the positive control of FlhD...
متن کاملAntagonistic activities of some probiotic lactobacilli culture supernatant on Serratia marcescens swarming motility and antibiotic resistance
Background and Objectives Serratia marcescens, a potentially pathogenic bacterium, benefits from its swarming motility and resistance to antibiotic as two important virulence factors. Inappropriate use of antibiotics often results in drug resistance phenomenon in bacterial population. Use of probiotic bacteria has been recommended as partial replacement. In this study, we investigated the effec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 73 9 شماره
صفحات -
تاریخ انتشار 2005